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Abstract

The present study is concerned with the numerical homogenization of hyperelastic two-dimensional model foams
with irregular microstructure under large macroscopic deformation. In contrast to the standard procedure of a single
analysis of a large-scale representative volume element where the microstructure is determined by means of a Voronoi
tesselation or a similar method, the present study proposes a direct probabilistic approach based on the multiple anal-
ysis of small-scale representative volume elements with randomized microstructure. Advantage of this method com-
pared to the standard procedures is the possibility of a proper stochastic assessment of the simulation results.
Especially, the scatter which has to be expected in the stress–strain response of the effective material becomes accessible
in terms of the standard deviation. In a number of parameter studies it is observed that an increasing microstructural
disorder results in a decrease of the effective stiffness of cellular solids due to variations in the underlying microstruc-
tural mechanisms of deformation.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

In modern lightweight construction, solid foams are important materials. Their advantage is their low
specific weight due to their high void volume fraction. Another important feature of cellular solids is their
high compressibility at an approximately constant stress which makes them a suitable choice for crash
absorbing functions. Hence, polymeric foams are widely used in crash and shock absorbing technology
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as well as in all kinds of packaging and personal protection systems such as safety helmets. Furthermore,
solid foams can be used for hybrid structural components performing load-carrying and non-mechanical
functions. Examples are filter and catalysator elements or structures with inherent good heat insulation
properties.

Solid foams are materials with structural hierarchy (Lakes, 1993), featuring a distinct microstructure.
The characteristic intrinsic length is in general much smaller than the characteristic length of the entire
structure or component on the macroscopic level. For reasons of numerical efficiency and due to the small
ratio of the characteristic intrinsic length scale to the external length scale, the analysis of structures con-
sisting of solid foams is preferrably be performed in terms of effective properties rather than by means of a
detailed model of the given microstructure. Therefore, the microstructure is replaced by a homogeneous
medium with macroscopically equivalent mechanical properties. The determination of the properties for
the homogenized medium can be performed by analytical/numerical or by experimental methods. Advan-
tage of the analytical and numerical methods is that they enable a deeper understanding of the microscopic
deformation processes and their specific effects on the macroscopic level of structural hierarchy.

The pioneering work on the analytical homogenization of solid foams has been performed by Gent and
Thomas (1963). Further early studies have been published by Dement�ev and Tarakanov (1970) as well as
by Patel and Finnie (1970). Due to the increasing interest in lightweight materials, an increasing number of
studies on the effective mechanical behavior of foams has been published in the past decade. Among the
recent contributions, the work by Christensen (1986), Gibson and Ashby (1997) as well as by Warren
and Kraynik (1988) should be mentioned. Compilations of recent work on solid foams can be found in
the textbook by Gibson and Ashby (1997) as well as in the review articles by e.g. Ashby (1983) and Gibson
(1989) or a review paper by the present authors on the homogenization of two-dimensional cellular struc-
tures (Hohe and Becker, 2002).

Most studies on the homogenization of cellular solids are based on regular models with a periodic micro-
structure. The most common models are the regular hexagonal structure in two-dimensional analyses or the
three-dimensional Kelvin foam which both satisfy Kelvin�s (1887) optimality criterion for the division of
space with minimum partitional area. Nevertheless, real solid foams are amorphous arrangements of pores
with different sizes and shapes rather than perfectly periodic structures. Therefore, analyses based on
strictly periodic structures might yield inaccurate results. Furthermore, the irregularity of the microstruc-
ture yields a significant scatter and variability of the effective properties as it has been observed in a recent
experimental study by Ramamurty and Paul (2004). In another recent experimental paper, Blazy et al.
(2004) have studied the effect of microstructural disorder on the effective strength of solid foams which
is assessed in terms of a Weibull probability density function.

In order to study the effect of different sizes of neighboring pores, Kraynik et al. (1991) have provided an
analysis of two-dimensional model foams consisting of a periodic arrangement of a patch of a small number
of cells with different sizes. Grenestedt and Bassinet (2000) have contributed a study on the effect of cell wall
thickness variations based on the analysis of a periodic Kelvin foam. The most common manner to deal
with the problem of irregular microstructures is the analysis of a large scale representative volume element
containing a large number of pores where the final geometry of the microstructure is determined by means
of a Voronoi technique. Analyses of this type have been provided among others by Chen et al. (1999), Silva
et al. (1995) and van der Burg et al. (1997) as well as in recent papers by Fazekas et al. (2002), Huyse and
Maes (2001), Roberts and Garboczi (2001) as well as by Zhu et al. (2001) for both, two-dimensional and
three-dimensional models.

On the other hand, it has been pointed out by Fortes and Ashby (1999) that a single analysis of a large-
scale representative volume element with a stochastic microstructure might still be inaccurate since in some
of the previously mentioned studies, artificial anisotropies are still present. Instead, they propose a direct
probabilistic approach based on a probability function for cell wall orientations. In an earlier publication,
Hall (1993) had proposed a probabilistic model based on the model by Warren and Kraynik (1988) with a
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stochastic distribution of the orientation of the Kelvin foam model. A similar model where the effec-
tive material is considered as a polycrystal consisting of Kelvin-foam particles with different orienta-
tions has later been proposed by Warren and Kraynik (1997) themselves. In a recent paper, Cuitiño
and Zheng (2003) have proposed a Taylor averaging technique for hyperelastic foams with different pore
sizes.

The present study is concerned with an alternative probabilistic approach. The analysis is based on a
homogenization procedure for periodic media which has been developed previously by the present authors
for the determination of the effective linear elastic properties of two-dimensional cellular sandwich cores
(Hohe and Becker, 2001a,b) and recently has been generalized to the numerical homogenization of periodic
two-dimensional model foams at finite deformation (Hohe and Becker, 2003). In the present approach, the
microstructure is randomized by a probabilistic determination of the spatial positions of the cell wall inter-
sections within prescribed areas using a random number generator. The mentioned area forms an addi-
tional effective material parameter describing the microstructural disorder. The homogenization is
performed in multiple numerical experiments which are evaluated by means of stochastic methods. In this
context, the expected stress–strain response is obtained in terms of the mean value from the numerical
experiments whereas the standard deviation defines the scatter band within which the mechanical response
of the foam has to be expected. A similar approach has been employed by Zohdi and Wriggers (2001) in the
homogenization of particle reinforced composite materials.

In the following section, the strain energy based concept for homogenization of hyperelastic peri-
odic model foams is outlined. Subsequently, the probabilistic homogenization procedure is derived. In a
number of parameter studies, it is observed that an increasing microstructural disorder results not only
in an increasing scatter but also in a softening of the effective material with decreasing mean values of
the effective stress–strain response. Two-dimensional foam models are used throughout the present study.
Nevertheless, the applied principles can easily be generalized to three-dimensional models without any
restriction.
2. Homogenization scheme for amorphous solid foams at finite strain

2.1. General concept

Consider a mechanical body X according to Fig. 1, consisting of a cellular material. The body is bounded
by the external boundary oX = oXu[oXt. On the boundary oXu, the components ui of the displacement vec-
tor are prescribed whereas the components ti = rijnj of the traction vector are prescribed on oXt. The sym-
bols rij and nj denote the components of the Cauchy stress tensor and the outward normal unit vector
Fig. 1. Concept of the representative volume element.



3552 J. Hohe, W. Becker / International Journal of Solids and Structures 42 (2005) 3549–3569
respectively. In addition to the tractions ti on oXt, the body X might be subjected to distributed body forces
fi.

For reasons of numerical efficiency, the body X cannot be analyzed by means of a detailed model of
the given microstructure. Instead, the body X is replaced by a similar body X* which is bounded by the
same external boundaries oXu and oXt with the same outward normal unit vector ni. In contrast to X,
the replacement body X* is assumed to consist of a homogeneous ‘‘effective’’ material with yet unknown
properties. The material constitutive behavior of the replacement body X* has to be determined such that
the mechanical response of the two bodies X and X* is equivalent on the macroscopic level of structural
hierarchy.

If the microstructure of the body X does not depend explicitly on the location within X, a representative
volume element XRVE and a similar volume element XRVE* consisting of the effective medium can be con-
sidered for determination of the effective stress–strain response of the replacement body X* (see Fig. 1). In
case of a perfectly periodic microstructure, the smallest repeating microstructural volume or a volume con-
sisting of an integer number of these volumes form an appropriate representative volume element. For ran-
dom microstructures, the representative volume element has to be chosen such that it containes a sufficient
number of the different constituents in order to be statistically representative for the microstructure of X.
The constitutive behavior of the volume element XRVE* has to be chosen such that the mechanical behavior
of both volume elements is macroscopically equivalent. In general, the characteristic dimension y of the rep-
resentative volume element is much smaller than the characteristic dimension Y of the entire body but lar-
ger than the infinitesimal length scale dy (Y� y� dy).

Similar as in a preceding article by the present authors (Hohe and Becker, 2003), the mechanical behav-
ior of the two volume elements XRVE and XRVE* is assumed to be macroscopically equivalent, if the average
strain energy in both volume elements is equal, provided that both volume elements are subjected to a mac-
roscopically equivalent deformation. For the strain energy density w in both volume elements, the equiv-
alence condition
�w ¼ 1

V RVE

Z
XRVE

w dV ¼ 1

V RVE

Z
XRVE�

w� dV ¼ �w� ð1Þ
has to be satisfied, where VRVE is the volume of both volume elements. In Eq. (1) as well as in all subsequent
equations, overbars denote volume averages whereas symbols marked with an asterisk denote quantities
related to the effective medium. The deformation of both volume elements is defined to be macroscopically
equivalent, if the volume average of the components Fij of the deformation gradient is equal for both vol-
ume elements:
F ij ¼
1

V RVE

Z
XRVE

F ij dV ¼ 1

V RVE

Z
XRVE�

F �
ij dV ¼ F

�
ij ð2Þ
In the case of hyperelastic material behavior, the macroscopic stress and strain components are related to
the stress and strain components on the effective level by means of their definitions
�cij ¼
1

2
ðF kiF kj � dijÞ ð3Þ

�sij ¼
o�w
o�cij

� D�w
D�cij

ð4Þ
where �cij and �sij are the components of the effective Green-Lagrange strain tensor and the second Piola-Kir-
chhoff stress tensor respectively.

The application of the homogenization scheme defined by Eqs. (1)–(4) for determination of the effective
stress–strain response of hyperelastic cellular solids requires the following four steps:
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• identification of an appropriate representative volume element,
• deformation of the representative volume element consisting of the given microstructure according to the

desired effective strain state �cij,
• computation of the strain energy for the given strain state and the corresponding partial derivatives,
• determination of the effective stress components �sij using Eq. (4).

Details are given in the following sections. Within this scheme, the structural analysis of the representa-
tive volume element can be performed by means of any suitable analytical or numerical method. The pres-
ent results have been obtained by means of finite element analyses.

2.2. Perfectly periodic microstructures

Prior to the application to random, irregular microstructures, the application of the homogenization
procedure defined in Section 2.1 to perfectly periodic microstructures is briefly outlined. The perfectly peri-
odic model forms the base for the enhanced model for irregular microstructures presented subsequently in
Section 2.3. All subsequent derivations are related to two-dimensional microstructures for reasons of
numerical efficiency and an easier visualization. Nevertheless, all principles employed in this simplified anal-
ysis can be applied to a fully three-dimensional analysis in the same manner without any restrictions.

An appropriate representative volume element for periodic two-dimensional cellular media with general
geometry and topology is presented in Fig. 2. Note that the microstructure in this figure—although it al-
ready includes some irregularity—is a strictly periodic array formed by a repeating arrangement of the three
highlighted cells. For all types of periodic two-dimensional microstructures, similar parallelogram-shaped
representative volume elements can be identified. The representative volume element is defined by two vec-
tors a and b which originate from any arbitrary point of the microstructure and point to the next corre-
sponding points of the periodic arrangement in two independent directions (see Fig. 2).

Similar as in a previous study (Hohe and Becker, 2003), the cell walls of the representative volume ele-
ment are meshed by a single layer of standard four-node shell elements in an upright orientation. The ele-
ment is based on an enhanced strain formulation in conjunction with a full integration scheme. All
displacements normal to the x1–x2-plane are constrained in order to ensure proper plane strain conditions.
Along the external boundaries of the representative volume element, periodic boundary conditions are ap-
plied. These conditions require that the displacements of the corresponding opposite boundaries are inter-
related by
ouþi
os

¼ ou�i
os

ð5Þ
Fig. 2. Representative volume element for general two-dimensional cellular structures.
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where s is a local coordinate pointing along the respective surface whereas uþi and u�i are the displacements
of the upper and lower surface respectively. By virtue of Eq. (5) it is ensured that neighboring volume ele-
ments, which set up the entire structure, fit at their joint boundaries even in the deformed configuration. In
the discretized form, the periodic boundary conditions along the external surfaces parallel to the vector a
take the form
uðiþ1Þ
k ¼ uðiÞk þ uð2Þk � uð1Þk ð6Þ

uð4Þk ¼ uð3Þk þ uð2Þk � uð1Þk ð7Þ

uðiþ1Þ
3 ¼ uðiÞ

3 ð8Þ

uð4Þ
3 ¼ uð3Þ

3 ð9Þ

where uðiÞk and uðiÞ

k denote the displacement and the rotation of node no. i with respect to the xk-axis respec-
tively. In a similar manner, the conditions
uðjþ1Þ
k ¼ uðjÞk þ uð2Þk � uð1Þk ð10Þ

uðjþ1Þ
3 ¼ uðjÞ

3 ð11Þ

hold for the nodes on the surfaces parallel to the vector b.

The finite element model is loaded by prescribed displacements of the corner nodes no. 1, 2 and 3 accord-
ing to the prescribed macroscopic strain state �cij. Expressions for the displacements of the corner nodes in
terms of the effective strain state can be derived from the two-dimensional equivalent to the kinematic
equivalence condition (2). Replacing the deformation gradient F �

ij for the given microstructure by its def-
inition in terms of the displacement gradient u�i;j and transformation of the area integral into a boundary
integral using Green�s theorem yields
F ij ¼ F
�
ij ¼

1

ARVE

Z
oARVE

u�i nj dsþ dij ð12Þ
where ARVE is the area of the representative volume element within the x1–x2-plane, oA
RVE is its external

boundary and s is a coordinate along oARVE. If the displacements between neighboring nodes on the exter-
nal boundaries are interpolated and the periodicity requirements (5) are considered, the integral in Eq. (12)
can be evaluated, resulting in
F 11 ¼
ða1 þ uð3Þ1 � uð1Þ1 Þb2 � ðb1 þ uð2Þ1 � uð1Þ1 Þa2

a1b2 � b1a2
ð13Þ

F 12 ¼
ðuð2Þ1 � uð1Þ1 Þa1 � ðuð3Þ1 � uð1Þ1 Þb1

a1b2 � b1a2
ð14Þ

F 21 ¼
ðuð3Þ2 � uð1Þ2 Þb2 � ðuð2Þ2 � uð1Þ2 Þa2

a1b2 � b1a2
ð15Þ

F 22 ¼
ðb2 þ uð2Þ2 � uð1Þ2 Þa1 � ða2 þ uð3Þ2 � uð1Þ2 Þb1

a1b2 � b1a2
ð16Þ
where ai and bi are the components of the vectors a and b defining the representative volume element (see
Fig. 2). Substituting Eqs. (13)–(16) into the definition (3) of the macroscopic strain �cij yields a system of
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three nonlinear equations for the six unknown displacement components uðjÞi of the corner nodes no. 1, 2
and 3. Together with three conditions for suppression of translatoric and rotatory rigid body motions of the
representative volume element, a complete system of equations for the displacements of the corner nodes in
terms of the prescribed effective strain state �cij is obtained. The system is solved by means of Newton�s
method.

From the solution in conjunction with the discretized periodicity conditions (6)–(11), the displacements
of all four corner nodes of the representative volume element are prescribed directly in terms of the effective
strain state whereas the displacements of the nodes between the corner nodes on the upper surfaces are pre-
scribed in terms of the prescribed effective strain state and the displacements of the corresponding nodes on
the lower surfaces which remain movable. The finite element analysis is performed for the desired effective
strain state �cij and for neighboring effective strain states �cij þ D�cij. Subsequently, the corresponding effective
stress components �sij are obtained from Eq. (4).

No cell wall interaction due to cell wall contact is included in the finite element model. Instead, the anal-
ysis is stopped, if cell wall contact occurs at rather large effective strain levels �cij. Nevertheless, it has been
observed in a previous paper using a similar finite element model (Hohe and Becker, 2003) that cell wall
contact for two-dimensional model foams is a feature, which occurs only at rather large effective strain lev-
els. Hence, the restriction introduced by the missing contact formulation is limited to rather large compres-
sive strain levels close to the point where self-interpenetration of the representative volume element would
occur.

2.3. Enhanced probabilistic model for irregular cellular microstructures

Solid foams are amorphous media consisting of cell walls and pores with different shapes and sizes rather
than being perfectly periodic arrangements of cells with equal size and shape as assumed in Section 2.2.
Therefore, the developed procedure has to be enhanced for a more realistic modeling of solid foams. A sim-
ple possibility for an enhancement is the analysis of a large-scale representative volume element with a ran-
dom microstructure as it is done in most studies in literature (e.g. Silva et al., 1995; van der Burg et al., 1997
among others). On the other hand, as it has been pointed out by Fortes and Ashby (1999), rather large rep-
resentative volume elements might be needed in order to avoid the development of artificial numerical
anisotropies. Instead, direct probabilistic approaches are more desirable.

Therefore, the microstructure of the representative volume element presented in Fig. 2 is randomized by
a random determination of the spatial positions of the cell wall intersections within prescribed areas of
dimension 2Dx1 · 2Dx2 around the respective position in case of a ‘‘perfect’’ microstructure with regular
cell shape (see Fig. 3). Thus, the topology of the microstructure is prescribed (e.g. regular hexagonal)
Fig. 3. Randomized cellular structure.
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whereas the geometry of the individual cells varies randomly. The degree of possible microstructural disor-
der is controlled by the parameters Dx1 and Dx2 which form additional effective material parameters. For
any kind of given cellular solid, the degree of microstructural disorder can easily be determined from micro-
graphic observations. In most cases, especially for isotropic microstructures Dx1 = Dx2 will be an appropri-
ate assumption. Note that the position of the nodes on the upper surfaces of the representative volume
element except the corner nodes no. 2 and 3 is not independent for reasons of periodicity of the randomized
microstructure (see Figs. 2 and 3).

Since interaction effects between neighboring pores of different size and shape can be important features
in the effective stress–strain response of irregular solid foams, the choice of a representative volume element
as the smallest possible repeating assembly according to Fig. 2 of the periodic reference microstructure is no
longer appropriate. Instead, patches consisting of small integer numbers of the smallest possible repeating
assembly in all spatial directions are used as a representative volume element. In this context, the required
number of repeating assemblies is determined in a study of convergence presented in Section 3.2. With
respect to the external surfaces of the representative volume element, the periodic boundary conditions
(6)–(11) are retained in order not to overconstrain the microstructure.

For each considered effective strain state �cij, the analysis is performed multiple times with an independent
random determination of the microstructural geometry for each of the numerical experiments. Subse-
quently, the effective stress is defined in terms of the mean value
�saij ¼
1

n

Xn
k¼1

�sðkÞij ð17Þ
where �sðkÞij is the effective stress obtained for the individual numerical experiments and n is the total number
of numerical experiments. The scatter which has to be expected in the effective stress–strain relation for a
cellular solid with a known degree of microstructural disorder can be assessed in terms of the standard
deviation
�ssij ¼
1

n� 1

Xn
k¼1

�saij � �sðkÞij

� �2 !1
2

: ð18Þ
The main advantage of the probabilistic approach compared to the standard approaches based on
the single analysis of a large-scale representative volume element available in the literature is that it
addresses both, the mean values of the effective stresses (or the effective stiffness if used in conjunction
with linear elasticity) and the corresponding scatter bands. Due to its simple formulation, the scheme
provides an efficient and easy-to-use procedure for the numerical homogenization of random micro-
structures if it is used in conjunction with parameterized finite element modeling and automatic mesh
generation.
3. Results

3.1. Periodic reference foam model

As a two-dimensional periodic reference foam model, the case of a regular hexagonal cellular structure is
employed. This kind of microstructure satisfies both, Kelvin�s (1887) optimality criterion as well as Chris-
tensen�s 1987 isotropy criterion for small deformations and therefore constitutes the ‘‘best’’ possible peri-
odic two-dimensional foam model. The microstructure and an appropriate representative volume element
consisting of the smallest possible repeating microstructural assembly are presented in Fig. 4. A constant
cell wall angle of w = 120� is assumed for all cell wall intersections. All struts in the model are of equal
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length l. For a realistic modeling of the foam geometry, a quadratic material or thickness distribution along
the cell walls is assumed which is defined by the cell wall thickness tc at the center of the struts and the strut
thickness ti at the cell wall intersections. The strut thicknesses tc and ti respectively are assumed to be the
same for all struts in the model. The actual values of the strut thicknesses are determined such that a pre-
scribed relative density �q is obtained.

For the cell walls a compressible Ogden (1984) type hyperelastic material model is assumed. The strain
energy potential is given by
w ¼
Xn
k¼1

lðkÞ

aðkÞ
kdev
1

� �aðkÞ þ kdev
2

� �aðkÞ þ kdev
3

� �aðkÞ � 3
� �

þ
Xn
k¼1

jðkÞðJ � 1Þ2k ð19Þ
with
kdev
k ¼ J�1

3kk
where kk are the principal values of the deformation gradient whereas J denotes the corresponding Jaco-
bian. Within the Ogden material model (19), the quantities n and a(k) as well as the generalized shear
and compression moduli l(k) and j(k) respectively are material constants (k = 1, . . ., n). Throughout the
present study, the material parameters are assumed as n = 2 with a1 = 1.5, l1 = 0.7GPa and
j1 = 0.4GPa as well as a2 = 3, l2 = 0.5GPa and j2 = 0. The material response defined by these parameters
is within the range of typical polymeric materials.

In the non-probabilistic analysis of the reference model foam, a representative volume element according
to Fig. 4 consisting of the smallest possible repeating microstructural assembly is considered. For random-
ized microstructures, patches consisting of m · m repeating elements (where m is a small integer number)
are assumed as representative volume elements. In order to regularize the mechanical response in occur-
rence of bifurcation points, some small geometrical imperfections are applied.

3.2. Convergence

Before the concept for numerical homogenization of irregular solid foams defined in Section 2 can be
applied to any kind of specific problem, the convergence of the proposed scheme has to be investigated.
The study of convergence has to be performed with respect to both, the number n of numerical experiments
as well as the number m of the repeating microstructural assemblies in the representative volume element.
Three different effective strain states involving all basic modes of deformation are considered:

• uniaxial tensile deformation within the x1-direction with �c11 ¼ 0:2 and �c22 ¼ �c12 ¼ 0,
• uniaxial compressive deformation within the x1-direction with �c11 ¼ �0:2 and �c22 ¼ �c12 ¼ 0 as well as
• pure shear deformation within the x1–x2-plane with �c11 ¼ �c22 ¼ 0 and �c12 ¼ 0:2.
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The results for the study of convergence regarding the number n of numerical experiments are presented
in Fig. 5. In this study, the areas for probabilistic determination of the spatial position of the cell wall inter-
sections (see Fig. 3) are assumed to be equal for all cell wall intersections with an edge length of
Dx1 = Dx2 = 0.2l. The cell walls are assumed to be of uniform thickness with tc = ti. The assumed relative
density of the foam is �q ¼ 5%. A patch of 2 · 2 repeating microstructural cell wall assemblies according to
Fig. 3 forms the underlying representative volume element. In the first column of Fig. 5, the mean values
�sa11, �s

a
22 and �s1212 of the three effective in-plane stress components for all three macroscopic reference strain

states are presented. The stress components are plotted depending on the number n of numerical experi-
ments included in the stochastic evaluation according to Eq. (17). In the second column, the corresponding
standard deviations are given. The numerical experiments are included in the order as they were computed.
No ranking or other re-arrangement is performed.

For the case of the uniaxial tensile deformation, nearly constant mean values �saij are obtained throughout
the considered range for the number n of numerical experiments except some slight initial scatter for small
n. The initial scatter is slightly more distinct in case of the uniaxial compressive deformation. Nevertheless,
Fig. 5. Study of convergence—number of numerical experiments.
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even for this load case, the mean values become more or less stable for n > 30. In the pure shear deforma-
tion case the effect occurs that the first ten numerical experiments yield effective stress results which are close
to each other but far from the final mean values. Therefore, an initial range with high average stresses with
a distinct scatter due to the still small number of numerical experiments is followed by a successive degra-
dation towards their final mean values at lower levels. The convergence of the corresponding standard devi-
ations �ssij in general proves to be slower than the convergence of the stress mean values. Nevertheless, for
n > 30, no severe scatter is observed in any of the considered macroscopic states of deformation. Note that
in all cases, the actual shape of the plotted curves and their development towards their final stable values
strongly depends on the order of the numerical experiments. Therefore, the occurrence of an extreme case
of the cellular microstructure can have different effects whether it occurs in one of the early or in one of the
later numerical experiments. In order to avoid problems caused by the possible occurrence of extreme
microstructures, all subsequent analyses are based on 50 numerical experiments. For n = 50, stable results
can be expected while the analysis still can be performed in a numerically efficient manner.

In a second study of convergence, the effect of the number m of repeating microstructural assemblies
forming the representative volume element is investigated. The study is based on the same type of micro-
structure as the first study of convergence. In contrast to this study, the number of numerical experiments is
kept constant at n = 50 whereas the number m of repeating microstructural assemblies according to Fig. 4 is
varied. Again, the basic load cases of uniaxial tensile deformation with �c11 ¼ 0:2, uniaxial compressive
deformation with �c11 ¼ �0:2 and pure shear deformation with �c12 ¼ 0:2 are considered. The results for
the stress mean values �sij are presented in Fig. 6.

It is observed that for the case of uniaxial tensile deformation, the number m of repeating microstruc-
tural assemblies in the representative volume element has only minor effects. For both, the case of uniaxial
Fig. 6. Study of convergence—size of representative volume element.
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compressive deformation and pure shear deformation, a distinct decrease is obtained in the level of the
mean values of effective stresses between m = 1 and m = 2. For larger numbers m, only minor variations
are observed. For the case of uniaxial compressive deformation, the decrease in the stress levels is not only
of stochastic nature. For the case of a perfectly periodic hexagonal structure, the microstructure would be
in a postbuckling state at the prescribed effective stress level �c11 ¼ �0:2. Since all of the lower eigenmodes
for regular hexagonal structures achieve periodicity only with respect to two neighboring repeating cells
(Gibson and Ashby, 1997; Hohe and Becker, 2003), the patch consisting of 2 · 2 repeating microstructural
assemblies results in significantly lower effective stresses than its 1 · 1 counterpart which deforms according
to a higher-order eigenmode. Similar microstructural modes of deformation develop for irregular micro-
structures resulting in a similar effect on the effective stress levels.

In all three considered modes of deformation, the results for the stress mean values for m = 2 and m = 4
respectively are nearly identical. Therefore, m = 2 is assumed to be sufficiently high. All subsequent anal-
yses are based on this value.

3.3. Effect of the microstructural irregularity

As a first parameter study, the effect of the microstructural cell irregularity on the effective stress–strain
response is studied in more detail. In Fig. 7, the effective stress–strain curves are presented for four different
degrees of cell irregularity characterized by the ratios Dxi/l of the edge lengths of the areas permitted for
random determination of the spatial positions of the cell wall intersections to the nominal cell wall lengths
l of the underlying regular hexagonal reference structure. The edge lengths Dx1 and Dx2 are assumed to be
equal in the present example, as well as in all subsequent analyses. Note that the largest degree of cell irreg-
ularity considered (Dxi/l = 0.3) might result in microstructures where the area of individual hexagonal cells
is between 39% and 189% of the cell area for the underlying regular hexagonal microstructure resulting in
a ratio of the maximum possible cell area to the minimum possible cell area of about 4.8. Thus, the case
Dxi/l = 0.3 constitutes a two-dimensional cellular solid with a rather high degree of microstructural
irregularity. The other extremum case of microstructural irregularity considered in Fig. 7 corresponds
to vanishing areas for random determination of the spatial positions of the cell wall intersections
(Dxi/l = 0). Here, the case of the perfectly regular hexagonal microstructure is recovered, which is employed
in most of the previous deterministic approaches.

In all cases, a constant cell wall thickness with tc = ti is assumed. The cell wall thickness is chosen
according to a relative density of 5%. Again, three different types of macroscopic deformation are
considered:

• uniaxial tensile deformation within the x1-direction with �c11 2 ½0; 1�,
• uniaxial compressive deformation within the x1-direction with �c11 2 ½�0:4; 0� and
• pure shear deformation within the x1–x2-plane with �c12 2 ½0; 0:4�.

Note that due to the nonlinear nature of the Green-Lagrange strain tensor, the cases �c11 ¼ �0:5 and
�c12 ¼ 
0:5 form the limit cases with 100% engineering strain where self-penetration of the representative
volume element would occur.

In the plots in the first line of Fig. 7, the effective stress mean values �sa11 acting within the direction of
macroscopic deformation as well as the macroscopic net stresses �sa22 are presented. The corresponding stan-
dard deviations �ssij are presented as thin lines of the same type as the corresponding mean values. Regarding
the mean values of the effective stresses �sa11 within the loading direction, almost no effect of the microstruc-
tural irregularity is observed. Nevertheless, increasing degrees Dxi/l of microstructural disorder result in
increasing standard deviations �ss11 indicating an increasing width of the scatter band within which the mac-
roscopic stress has to be expected.



Fig. 7. Effect of the cell irregularity.
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In their experimental study on disorder effects in the macroscopic response of closed-cell metallic foams,
Ramamurty and Paul (2004) have observed a variance Es/Ea in the effective Young�s moduli of up to 16%.
The results are not directly comparable with the present results since Ramamurty and Paul are concerned
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with linear elasticity occurring at small deformation of elastic-plastic metal foams whereas the present study
is concerned with the nonlinear elastic response of polymeric foams. Nevertheless, the variance observed by
Ramamurty and Paul (2004) in the effective Young�s moduli is approximately the same as the effective stress
variance observed in Fig. 7 for the model foam with a moderate degree of microstructural disorder
(Dxi/l = 0.2) at a moderately large effective strain level of �c11 ¼ 0:1. The fact that the variances observed
experimentally and determined numerically are in the same order of magnitude gives evidence for the strong
capabilities of the present approach in the modelling of cellular solids with randomly disordered
microstructure.

Regarding the net stress mean values �sa22 perpendicular to the macroscopic loading direction, an increas-
ing degree of microstructural disorder results in a softening of the model foam on the macroscopic level of
structural hierarchy. In this context, the effect that the generalized effective Poisson�s ratio �m12 ¼ �sa22=�s

a
11 is

deformation-dependent, which already occurs in the case of perfectly regular hexagonal microstructures
(see Hohe and Becker, 2003), becomes more severe with increasing microstructural disorder. For small
deformations, an effective Poisson�s ratio of �m12 ¼ 1 is obtained as it is known from small strain analyses
(see e.g. Gibson and Ashby, 1997) resulting in equal stress mean values �sa11 and �sa22 within and perpendicular
to the macroscopic loading direction if �c ! 0. For increasing macroscopic strain levels �c11 and increasing
degrees Dxi/l of microstructural disorder, increasing differences between both stress components develop.
The mean value of the effective shear stress �sa12 vanishes throughout the considered range of effective strains
and is therefore not presented explicitly. Nevertheless, it should be noted that even if the mean values of the
effective shear stresses vanish, increasing standard deviations �ss12 indicate an increasing scatter band width
with increasing microstructural disorder. Therefore, for high degrees of microstructural disorder, some
shear stresses might develop even in the case of pure stretching deformation on the macroscopic level.

In the second line of plots in Fig. 7, the normal stresses �sa11 and �sa22 acting within and perpendicular to the
macroscopic loading direction are presented for the case of uniaxial compressive deformation within the x1-
direction. The effective shear stresses �sa12 are vanishing. Therefore, no shear stress plot is included. In the
current effective deformation mode, a microstructural instability phenomenon is encountered for the case
of a perfectly regular microstructure at small effective strain levels. A kink in the macroscopic stress–strain
curve separates the prebuckling range with a steep increase of the effective stress levels with increasing com-
pressive strain levels from the postbuckling range with a plateau region followed by a moderate secondary
increase of the normal stress level ��sa11 at high levels of the prescribed effective strain (�c11 < 0:3). In the
postbuckling range, only the stable branch of the stress–strain curve is presented. For the imperfect irreg-
ular microstructures with Dx1 > 0, no buckling in the Eulerian sense is present. Instead of the kink in the
effective stress–strain curve, a soft transition between the initial steep curve and the plateau region is
achieved. At high levels of the prescribed macroscopic effective strain �c11, an increasing degree Dxi/l of
microstructural disorder results in an increase in the mean value of the macroscopic normal stress level
��sa11. In this context, the plateau region in the macroscopic stress–strain response becomes less distinct with
increasing degrees of microstructural disorder where the effective stress–strain response develops towards a
curve with only moderate changes in the first gradient.

More distinct effects of the degree Dx1/l of microstructural disorder are observed in terms of the net
stress �s22 acting perpendicular to the direction of the applied effective strain �c11. Here, a deformation in-
duced negative generalized Poisson�s ratio occurs on the effective level for �c11 � �0:4 (Hohe and Becker,
2003). For increasing degrees of microstructural disorder, the point of the first occurrence of a negative
effective Poisson�s ratio is shifted towards lower levels of effective strain �c11. Especially for the largest degree
of microstructural disorder (Dxi/l = 0.3), a large scatter band width occurs with a standard deviation �ss22
which is in the same order of magnitude as the corresponding mean value �sa22. For smaller degrees of micro-
structural disorder, the scatter band width is in general smaller. Nevertheless, even in theses cases, a distinct
increase in the standard deviation �ss22 and therefore in the scatter band width occurs, if the occurrence of a
negative effective Poisson�s ratio with a positive mean value �sa22 of the net stress is approached or exceeded.
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For the case of the largest considered degree of microstructural disorder (Dxi/l = 0.3) at a high effective
strain level (�c11 � �0:36), a kink is observed in the curves for both the mean stress �sa22 and the standard
deviation �ss11. The reason for this kink is that especially for microstructures with a large degree of disorder,
extreme microstructural geometries might occur for which the numerical simulation breaks down at large
effective deformations. In this event, the stochastic evaluation of the numerical experiments at higher effec-
tive strain levels is continued with the remaining numerical experiments. On the other hand, the sudden
change in the underlying database causes an increase in the weight factors for the remaining numerical
experiments from 1/50 to 1/49 (and maybe more) since the following data points are computed with less
than n = 50 numerical experiments. The shrinking of the database results in the observed discontinuities
in the gradients of the macroscopic stress strain curves.

In the bottom three plots in Fig. 7, the in-plane stress components �s11, �s22 and �s12 in case of a pure
shear deformation �c12 on the macroscopic level are presented. In contrast to small strain analyses, where
no coupling of normal and shear deformation occurs (see e.g. Gibson and Ashby, 1997), a pure shear
deformation in the finite strain regime causes not only non-vanishing shear stresses �s12 but also significant
normal stresses �s11 and �s22. The reason for this effect is the underlying microstructural mode of deforma-
tion. At large effective shear strains �c12, the cell walls are aligned into an inclined direction with an angle
of 45� with respect to both, the x1- and x2-axes. Since this alignment is also associated with distinct
stretching of the aligned cell walls into their longitudinal direction, non-vanishing normal stresses �s11
and �s22 develop (Hohe and Becker, 2003). This effect cannot be observed in small strain analyses since
the re-orientation of the cell walls cannot properly be described under the assumption of small
deformations.

Another specific feature which cannot be observed at small effective strains is the deformation-induced
anisotropy which develops in terms of the normal stress components �s11 and �s22 in case of the pure shear
deformation on the effective level. At small effective strains, the perfectly regular hexagonal microstructure
with vanishing disorder (Dx1/l = 0) is isotropic due to it�s threefold symmetry (Christensen, 1987). Conse-
quently, the effective stress components �sa11 and �sa22 are equal for this geometry if the effective strain is small
or moderate ð�s 6 0:1Þ. At larger effective strain levels, increasing differences between the two in-plane nor-
mal stress components are observed (see Fig. 7). The kink in the curve �s22ð�c12Þ which separates the decreas-
ing part of the stress–strain curve from the secondary increase marks a bifurcation of the stress–strain curve
due to a microstructural instability. Similar to the case of uniaxial compressive deformation, only the stable
branch is presented in the postbuckling range.

In the probabilistic analyses, no bifurcation of the macroscopic mean stress �sa22 occurs. With increasing
degrees Dxi/l of microstructural disorder, the stress strain curve �sa22ð�c11Þ developes towards a curve which
increases monotonically with the level of the effective strain �c11. Throughout the considered range of the
effective shear strain �c12, the standard deviations �ss22 especially for large degrees Dxi/l of microstructural dis-
order are of the same order of magnitude as the corresponding mean values �sa22 indicating large scatter band
widths. The same effect is observed in case of the second in-plane stress component �s22 as well as in case of
the shear stress component �s12. In case of the effective shear strain it is observed that an increasing degree of
microstructural disorder results in a softening of the microstructure with decreasing stress mean values �sa12
at high effective strain levels. For small effective strain levels, the opposite effect is observed. Due to the
increasing disorder of the microstructure, the microstructural mode of deformation is shifted from pure
bending in case of a perfectly regular microstructure and �c12 ! 0 to a mode of deformation which consists
of both, bending and stretching deformation on the cell wall level. This mode involves more strain energy
than the pure bending mode and therefore results in higher effective stress levels. Nevertheless, it should be
noted that due to the large scatter band widths indicated by standard deviations �ss12 which are in the same
order of magnitude as the corresponding mean values �sa12 and (in some ranges) beyond, even an effective
stress–strain response close to the curve corresponding to the perfectly periodic microstructure might occur
with a non-negligible probability.
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3.4. Effect of the material distribution along the cell walls

In all previous analyses, a constant material distribution with tc/ti = 1 along the cell walls has been as-
sumed. For real foams, this fraction will be less than one. Therefore, the effect of the material distribution
along the cell walls is studied in more detail. Two different macroscopic modes of deformation are
considered:

• uniaxial tensile deformation with �c22 ¼ �c12 ¼ 0 and a prescribed nonvanishing effective strain �c11 at the
levels of �c11 ¼ 0:01 as well as �c11 ¼ 0:2 and

• uniaxial compressive deformation with �c11 ¼ �0:01 and �c11 ¼ �0:2 where �c22 ¼ �c12 ¼ 0.

The ratio tc/ti is varied over the total possible interval from small values close to zero towards the case
tc/ti = 1 where the cell wall thickness is constant along the individual struts. In all cases, the actual values of
tc and ti are chosen according to the prescribed ratio in such a manner that the relative density of the foam
�q ¼ 5%. The same degrees Dxi/l of microstructural disorder as in the previous analyses (see Section 3.3) are
considered. The results are presented in Fig. 8.

For both tensile load cases, it is observed that for typical cell wall thickness ratios for standard foams
(tc/ti 2 [0.5,1]) the material distribution has nearly no effect on both, the stress �s11 acting within the macro-
scopic loading direction as well as the net stress �s22 perpendicular to the macroscopic loading direction.
Therefore, the simplified assumption of uniform cell wall thickness, as it has been made in the previous
investigations, is clearly justified in this range of the cell wall thickness ratio tc/ti. For smaller thickness ra-
tios, as tc/ti ! 0, a progressive decrease of both stress components is observed. In this range, the deforma-
tion of the cell walls is increasingly localized in the vicinity of the centers of the individual cell walls whereas
the cell wall deformation in the vicinity of the cell wall intersections decreases. The strain localization in
Fig. 8. Effect of the material distribution along the cell walls.
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conjunction with the decreasing thickness at the cell wall centers causes the decrease of the effective stresses.
Again, an increasing degree of microstructural disorder causes a general weakening of the structure on the
macroscopic level.

Similar to the cases of uniaxial tensile deformation, only minor effects of the cell wall thickness ratio tc/ti

on the stress component �sa11 are observed in the interval [0.5, 1] for uniaxial compressive deformation. For
lower cell wall thickness ratios, a rapid decrease of the effective stress level is observed due to microscopic
strain localization effects. At the low effective strain level �c11 ¼ �0:01 the effect of the degree Dxi/l of the
microstructural disorder is more severe than in the tensile load cases. The effective stress level for the per-
fectly regular microstructure is approximately twice the effective stress level for the microstructure with the
maximum microstructural disorder. This strong effect derives from the fact that the effective strain level of
�c11 ¼ �0:01 is close to the bifurcation of the effective stress–strain curve of the perfectly periodic micro-
structure where strong effects of microstructural geometric imperfections have to be expected (see also
Fig. 7). For the net stress �sa22, the effect of the cell wall thickness ratio t

c/ti is stronger, especially for the large
effective strain level ð�c11 ¼ �0:2Þ. The reason for this strong effect is a change in the microstructural mode
of deformation in the postbuckling range for moderate and small tc/ti. For decreasing cell wall thickness
ratios, the microstructural mode of deformation changes from distributed bending of the entire cell walls
to localized bending around the center of the cell walls in conjunction with a rotation of the nearly unde-
formed areas around the cell wall intersections. Some scatter in the stress mean values for small cell wall
thickness ratios is due to the shrinking database in this range since in a few cases of extreme microstruc-
tures, no numerical solution has been obtained.

3.5. Effect of the relative density

The most important microstructural property for amorphous foams is the relative density �q. The effect of
this quantity is studied in the final parameter study. In this parameter study, the same effective loading con-
ditions are considered as in the study concerning the effect of the cell wall material distribution (see Section
3.4). The material distribution along the struts is assumed to be uniform with tc = ti again. The prescribed
relative density is varied from 1% to 25%. The results are presented in Fig. 9 where the plots in the first two
lines are directed to the in-plane normal stresses �sa11 and �sa22 for the two macroscopic strain levels in tension
whereas the corresponding results for the two compressive load cases are presented in the last line.

For both uniaxial tensile deformation cases, an almost linear dependence of the effective stresses �sa11 and
�sa22 on the relative density is obtained. This result indicates that the underlying micromechanical mode of
deformation is dominated by cell wall stretching since the stretching stiffness of the cell walls increases lin-
early with the cell wall thickness tc = ti which depends linearly on the relative density �q of the foam. Thus,
the microscopic mode of deformation consists of localized cell wall bending in the vicinity of the cell wall
intersections to enable an alignment of the cell walls into the macroscopic loading direction whereas the
aligned cell walls are deformed by stretching in their longitudinal direction. Since stretching deformation
involves a much higher strain energy density than bending deformation, the stretching mode dominates
the behavior of the foam on the effective level of structural hierarchy.

For small effective deformation levels ð�c11 ¼ 0:01Þ the effect of the relative density on the effective stresses
changes for increasing degrees Dxi/l of microstructural disorder. Especially for the model foam with the
largest degree of microstructural disorder (Dxi/l = 0.3), a distinct nonlinear increase especially of the stress
mean value �sa11 within the loading direction is observed. This result indicates that the underlying microstruc-
tural mode of deformation changes from a stretching dominated mode to a mode dominated by cell wall
bending. For larger amounts of effective deformation (see the results for �c11 ¼ 0:2), no such effect exists.
Due to the large microstructural irregularity at Dxi/l = 0.3, a bending dominated microstructural deforma-
tion is enabled at small levels of effective deformation until the cell walls are re-aligned in such a manner
that any further deformation requires a significant amount of longitudinal stretching of the individual cell



Fig. 9. Effect of the relative density.
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walls. In this range of the effective deformation, the dependence of the effective stresses on the relative den-
sity becomes linear again.

Under uniaxial compressive deformation, an entirely different effect is observed (see the bottom two
plots in Fig. 9). For high levels of compressive deformation (�c11 ¼ �0:2), the dependence of the effective
stresses �saij on the relative density �q is nonlinear irrespectively of the degree Dxi/l of microstructural disor-
der. At this level of effective deformation, the perfectly regular hexagonal microstructure is in the postbuck-
ling range where the microstructural mode of deformation consists in distributed bending of the (buckled)
cell walls but involves nearly no longitudinal deformation of any of the cell walls in the representative vol-
ume element. The geometrically imperfect, disordered microstructures are deformed in a similar manner
governed by cell wall bending so that the macroscopic stresses must depend in a nearly cubic manner on
the relative density �q. At small levels of effective deformation ð�c11 ¼ �0:01Þ, a nonlinear characteristic of
the stress vs. relative density curves is obtained only for small relative densities. Only in this range,
the microstructure is in a postbuckling state. For large relative densities, the buckling load for the perfectly
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regular structure is not exceeded due to the large cell wall thickness. Therefore, the dependence of the
effective stresses �saij on the relative density �q is again linear in this range of the relative density. Since for
the case �c11 ¼ �0:01 the load level is close to the bifurcation load of the perfectly regular hexagonal micro-
structure, a distinct softening of the structure is observed as the degree Dxi/l of microstructural disorder and
therefore the geometric imperfection of the model foam increases.
4. Conclusion

The subject of the present study is the analysis of the effect of microstructural irregularity on the mac-
roscopic stress–strain response of solid foams. For the homogenization analysis, a probabilistic approach is
proposed which is based on the multiple analysis of a small-scale representative volume element with a ran-
domized microstructure. In this context, the foam topology is prescribed whereas the spatial positions of
the cell wall intersections are determined randomly within prescribed areas. The spatial extent of these areas
forms an additional microstructural parameter defining the possible microstructural disorder. The results of
the multiple homogenization analyses are evaluated by standard stochastic procedures.

Within this approach, a strain-energy based procedure is utilized for the homogenization of the micro-
structure. This scheme defines the macroscopic mechanical equivalence of a representative volume element
for the cellular microstructure and a corresponding volume element consisting of the effective medium by
the condition that the average strain energy density in both volume elements has to be equal, provided that
the volume average of the deformation gradient is equal in both elements. Advantage of this approach is
that Hill�s principle is satisfied in a natural manner. No restrictions with respect to the geometry and topol-
ogy of the microstructure apply. The scheme can be applied in both the infinitesimal and the finite strain
regime. The effective stress and strain tensors are determined on the macroscopic level by means of their
definitions in terms of the strain energy density and the deformation gradient. In this context, the study
is restricted to hyperelastic materials.

The proposed probabilistic scheme forms a numerically efficient and reliable procedure. The additionally
introduced microstructural parameter to define the degree of microstructural disorder can easily be deter-
mined for any given cellular solid from micrographic observations. Compared to the standard procedure of
a single analysis of a large-scale representative volume element consisting of a large number of cells ob-
tained by a Voronoi technique, the present approach has the advantage that the scatter of the effective
material properties can be assessed in terms of the standard deviation which is not available in the standard
procedure. Thus, predictions based on the present approach do not only give the mean value of the effective
stresses to be expected for any given effective strain state but they may also give information about the scat-
ter band within which the effective stresses have to be expected. Since representative volume elements con-
sisting of rather small numbers of cells prove to be sufficient, the proposed probabilistic homogenization
scheme can be applied in a numerically efficient manner.

Subsequently, the proposed scheme is applied to the numerical determination of the effective stress-strain
response of two-dimensional cellular solids at finite strains. It is observed that at large tensile deformation,
the effective material response is governed by an alignment of the cell walls into the macroscopic loading
direction. At large compressive and shear deformation levels, microstructural instabilities cause material
instabilities on the macroscopic level. Both effects cannot properly be addressed in small strain analyses.
Other non-classical effects consist in deformation induced anisotropies of initially isotropic structures
and deformation induced changes in the generalized effective Poisson�s ratios of the material.

Regarding the effect of the microstructural disorder, it is observed that this property can have a variety
of different effects. In general, an increasing degree of disorder on the microstructural level causes a decrease
in the effective stiffness. Nevertheless, deep in the postbuckling range under compressive or shear deforma-
tion, the opposite effect might also occur. In this context, the point of occurrence of a negative effective
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Poisson�s ratio under compressive deformation is shifted towards significantly lower levels of the effective
deformation, if the degree of microstructural disorder is increased. In all cases, an increasing degree of
microstructural disorder causes a transition in the microstructural mode of deformation from a mode dom-
inated by stretching of the individual cell walls into their longitudinal direction with only slight localized
bending effects towards modes of deformation which involve much higher amounts of bending deformation
on the microscopic level.

In general, increasing degrees of microstructural disorder result in increasing scatter of the effective stres-
ses indicated by increasing standard deviations. Whereas the scatter band width under tensile deformation
is small or moderate compared to the stress mean values, the standard deviation can be in the same order of
magnitude as the corresponding mean value even for small degrees of microstructural disorder, if the foam
is deformed in a compressive or shear mode on the effective level.

Thus, the microstructural disorder of amorphous solid foams has distinct effects on their effective stress–
strain behavior. Analyses based on regular periodic foam models might yield inaccurate results even for the
mean values of the effective stresses. For a more accurate analysis, probabilistic models should be utilized.
In this context, the presently proposed model might be an efficient tool for a more reliable numerical
homogenization analysis.
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